Heritability of variation in glycaemic response to metformin: a genome-wide complex trait analysis

نویسندگان

  • Kaixin Zhou
  • Louise Donnelly
  • Jian Yang
  • Miaoxin Li
  • Harshal Deshmukh
  • Natalie Van Zuydam
  • Emma Ahlqvist
  • Chris C Spencer
  • Leif Groop
  • Andrew D Morris
  • Helen M Colhoun
  • Pak C Sham
  • Mark I McCarthy
  • Colin N A Palmer
  • Ewan R Pearson
چکیده

BACKGROUND Metformin is a first-line oral agent used in the treatment of type 2 diabetes, but glycaemic response to this drug is highly variable. Understanding the genetic contribution to metformin response might increase the possibility of personalising metformin treatment. We aimed to establish the heritability of glycaemic response to metformin using the genome-wide complex trait analysis (GCTA) method. METHODS In this GCTA study, we obtained data about HbA1c concentrations before and during metformin treatment from patients in the Genetics of Diabetes Audit and Research in Tayside Scotland (GoDARTS) study, which includes a cohort of patients with type 2 diabetes and is linked to comprehensive clinical databases and genome-wide association study data. We applied the GCTA method to estimate heritability for four definitions of glycaemic response to metformin: absolute reduction in HbA1c; proportional reduction in HbA1c; adjusted reduction in HbA1c; and whether or not the target on-treatment HbA1c of less than 7% (53 mmol/mol) was achieved, with adjustment for baseline HbA1c and known clinical covariates. Chromosome-wise heritability estimation was used to obtain further information about the genetic architecture. FINDINGS 5386 individuals were included in the final dataset, of whom 2085 had enough clinical data to define glycaemic response to metformin. The heritability of glycaemic response to metformin varied by response phenotype, with a heritability of 34% (95% CI 1-68; p=0·022) for the absolute reduction in HbA1c, adjusted for pretreatment HbA1c. Chromosome-wise heritability estimates suggest that the genetic contribution is probably from individual variants scattered across the genome, which each have a small to moderate effect, rather than from a few loci that each have a large effect. INTERPRETATION Glycaemic response to metformin is heritable, thus glycaemic response to metformin is, in part, intrinsic to individual biological variation. Further genetic analysis might enable us to make better predictions for stratified medicine and to unravel new mechanisms of metformin action. FUNDING Wellcome Trust.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of heritability in mapping expression quantitative trait loci

Gene expression, as a heritable complex trait, has recently been used in many genome-wide linkage studies. The estimated overall heritability of each trait may be considered as evidence of a genetic contribution to the total phenotypic variation, which implies the possibility of mapping genome regions responsible for the gene expression variation via linkage analysis. However, heritability has ...

متن کامل

Causal Genomic and Epigenomic Network Analysis emerges as a New Generation of Genetic Studies of Complex Diseases

In the past decade, rapid advances in genomic technologies have dramatically changed the genetic studies of complex diseases. Genome-wide association studies (GWAS) have been widely used in dissecting genetic structure of complex diseases. As of December 18th, 2014, A Catalog of Published Genome-Wide Association Studies (GWAS) had reported significant association of 15,177 SNPs with more than 7...

متن کامل

GCTA: a tool for genome-wide complex trait analysis.

For most human complex diseases and traits, SNPs identified by genome-wide association studies (GWAS) explain only a small fraction of the heritability. Here we report a user-friendly software tool called genome-wide complex trait analysis (GCTA), which was developed based on a method we recently developed to address the "missing heritability" problem. GCTA estimates the variance explained by a...

متن کامل

Localising Loci underlying Complex Trait Variation Using Regional Genomic Relationship Mapping

The limited proportion of complex trait variance identified in genome-wide association studies may reflect the limited power of single SNP analyses to detect either rare causative alleles or those of small effect. Motivated by studies that demonstrate that loci contributing to trait variation may contain a number of different alleles, we have developed an analytical approach termed Regional Gen...

متن کامل

Quantifying the heritability of glioma using genome-wide complex trait analysis

Genome-wide association studies (GWAS) have successfully identified a number of common single-nucleotide polymorphisms (SNPs) influencing glioma risk. While these SNPs only explain a small proportion of the genetic risk it is unclear how much is left to be detected by other, yet to be identified, common SNPs. Therefore, we applied Genome-Wide Complex Trait Analysis (GCTA) to three GWAS datasets...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2014